PETSc: Next Generation Readiness
Background

 PETSc provides
* Algebraic solvers
* |ntegrators
e Adjoints
e Optimization (Tao)
* High level libraries (libMesh, Moose, Firedrake) and
application codes provide the rest
* PETSc is organized as a class library. “All” numerical
computation and memory usage occurs within
* \Vector classes
* Matrix classes
e code under the users responsibility



PETSc: Next Generation Readiness
Computer Model

e MPI based
 Fat nodes

N shared memory CPUs
m < N physical accelerators with significant memory
m <= M < N virtual accelerators
Accelerators provide 95+% of the system’s
 Computation performance (flops)
* Memory bandwidth
Bandwidth between CPUs and accelerators low
MPI may or may not connect directly to accelerator
memory (optimization)
Local accelerators may or may not connect directly
to neighboring accelerators (optimization)



PETSc: Next Generation Readiness
PETSc Programming Model (1)
Application Codes

PETSc

OpenMP 5

Other higher node level programming models??
Kokkos

Lower level programming models

 CUDA

* OpenCL

* Other lower level programming models ??



PETSc: Next Generation Readiness
PETSc Programming Model (2)

PETSc

Orchestration code (C) runs on the M (MPI rank) CPUs
Vector and matrix class runs on the
* N CPUs (OpenMP) (limited usage)
M virtualized accelerators
e CUDA
* OpenCL
¢ 777
Vector and matrix classes transparently manage data
motion (or perceived) motion between CPU and accelerator

memory via

 VecGetArray(), VecGetArrayRead(), VecGetArrayWrite()
 VecCUDAGetArray(), VecCUDAGetArrayRead(),
VecCUDAGetArrayWrite()



PETSc: Next Generation Readiness
. Coal PETSc Programming Model (3)

* Essentially “all” PETSc and “all” user computation and
data reside on the accelerators.

 CPUs orchestrate the computation and do the little work
that cannot be done on the accelerators

* Route:

 Move more PETSc matrix operations to accelerators

e Optimize accelerator code

* Additional implementations of accelerator code based
on ??

* Fuse vector and matrix methods in accelerator code for
higher performance

* Optimize MPI by pass for local accelerators and send
directly from accelerator memory



